Structural contributions of delta class glutathione transferase active-site residues to catalysis.
نویسندگان
چکیده
GST (glutathione transferase) is a dimeric enzyme recognized for biotransformation of xenobiotics and endogenous toxic compounds. In the present study, residues forming the hydrophobic substrate-binding site (H-site) of a Delta class enzyme were investigated in detail for the first time by site-directed mutagenesis and crystallographic studies. Enzyme kinetics reveal that Tyr111 indirectly stabilizes GSH binding, Tyr119 modulates hydrophobic substrate binding and Phe123 indirectly modulates catalysis. Mutations at Tyr111 and Phe123 also showed evidence for positive co-operativity for GSH and 1-chloro-2,4-dinitrobenzene respectively, strongly suggesting a role for these residues in manipulating subunit-subunit communication. In the present paper we report crystal structures of the wild-type enzyme, and two mutants, in complex with S-hexylglutathione. This study has identified an aromatic 'zipper' in the H-site contributing a network of aromatic pi-pi interactions. Several residues of the cluster directly interact with the hydrophobic substrate, whereas others indirectly maintain conformational stability of the dimeric structure through the C-terminal domain (domain II). The Y119E mutant structure shows major main-chain rearrangement of domain II. This reorganization is moderated through the 'zipper' that contributes to the H-site remodelling, thus illustrating a role in co-substrate binding modulation. The F123A structure shows molecular rearrangement of the H-site in one subunit, but not the other, explaining weakened hydrophobic substrate binding and kinetic co-operativity effects of Phe123 mutations. The three crystal structures provide comprehensive evidence of the aromatic 'zipper' residues having an impact upon protein stability, catalysis and specificity. Consequently, 'zipper' residues appear to modulate and co-ordinate substrate processing through permissive flexing.
منابع مشابه
Catalytic and structural contributions for glutathione-binding residues in a Delta class glutathione S-transferase.
Glutathione S-transferases (GSTs) are dimeric proteins that play a major role in cellular detoxification. The GSTs in mosquito Anopheles dirus species B, an important malaria vector in South East Asia, are of interest because they can play an important role in insecticide resistance. In the present study, we characterized the Anopheles dirus (Ad)GST D3-3 which is an alternatively spliced produc...
متن کاملEvaluation of the role of two conserved active-site residues in beta class glutathione S-transferases.
Glutathione S-transferases (GSTs) normally use hydroxy-group-containing residues in the N-terminal domain of the enzyme for stabilizing the activated form of the co-substrate, glutathione. However, previous mutagenesis studies have shown that this is not true for Beta class GSTs and thus the origin of the stabilization remains a mystery. The recently determined crystal structure of Proteus mira...
متن کاملCharacterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis.
Since their discovery, bacterial glutathione (GSH)transferases have been characterized in terms of their ability to catalyse a variety of different reactions on a large set of toxic molecules of xenobiotic or endobiotic origin. Furthermore the contribution of different residues in the GSH-binding site to GSH activation has been extensively investigated. Little is known, however, about the contr...
متن کاملGlutathione-Binding Site of a Bombyx mori Theta-Class Glutathione Transferase
The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromid...
متن کاملClarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique.
hGSTZ1-1 (human glutathione transferase Zeta 1-1) catalyses a range of glutathione-dependent reactions and plays an important role in the metabolism of tyrosine via its maleylacetoacetate isomerase activity. The crystal structure and sequence alignment of hGSTZ1 with other GSTs (glutathione transferases) focused attention on three highly conserved residues (Ser-14, Ser-15, Cys-16) as candidates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 428 1 شماره
صفحات -
تاریخ انتشار 2010